Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival.

نویسندگان

  • Feng Huang
  • Xiao Zhu
  • Xin-Qun Hu
  • Zhen-Fei Fang
  • Liang Tang
  • Xiao-Ling Lu
  • Sheng-Hua Zhou
چکیده

The endothelial cell-specific microRNA (miRNA), miR-126, is considered a master regulator of physiological angiogenesis. Transplanted mesenchymal stem cells (MSCs) release soluble factors contributing to neoangiogenesis and cardiac repair. Therefore, we hypothesized that the over-expression of miR-126 may prolong MSC survival and enhance the cell secretome, thereby improving post-infarction angiogenesis and cardiac function. In this study, MSCs harvested from male C57BL/6 mouse bone marrow were infected in vitro with miR-126 (MSC(miR-126)) by using recombinant lentiviral vectors; the control cells were either non-transfected or transduced with mock vectors (MSC(null)). The results showed an increased secretion of angiogenic factors and a higher resistance against hypoxia in MSC(miR-126) compared with the control cells. The expression of the Notch ligand Delta-like (Dll)-4 in the MSC(miR-126) group was also increased. For in vivo experiments, MSC(miR-126) cultures were intramyocardially injected into the infarct region of the hearts of female C57BL/6 mice (an acute myocardial infarction model) who had undergone ligation of the left anterior descending coronary artery. The survival of MSC(miR-126) cultures, determined by Sry expression, was increased at 7 days after transplantation. MSC(miR-126)-treated animals showed significantly improved cardiac function as assessed by echocardiography 2 weeks later. The expression levels of angiogenic factors and Dll-4 in the infarcted myocardium were further increased by MSC(miR-126) compared with MSCs or MSC(null) cultures. Furthermore, fluorescent microsphere and histological studies revealed that myocardial blood flow and microvessel density were significantly increased in the MSC(miR-126)-transplanted animals. In addition, we found increased immature vessel proliferation following the transplantation of MSC(miR-126) cultures in which the expression of Dll-4 had been knocked down. However, blood vessels with lumen were barely detected, which indicated that Dll-4 plays a key role in tubulogenesis. We conclude that the transplantation of MSCs overexpressing miR-126 can further enhance functional angiogenesis in the ischemic myocardium possibly by the secretion of angiogenic factors and the activation of Dll-4, thus increasing MSC survival. Therefore, MSCs modified with miR-126 may represent a novel and efficient therapeutic approach for ischemic angiogenesis and the improvement of cardiac function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angiogenic Mechanisms of Human CD34+ Stem Cell Exosomes in the Repair of Ischemic Hindlimb.

RATIONALE Paracrine secretions seem to mediate therapeutic effects of human CD34+ stem cells locally transplanted in patients with myocardial and critical limb ischemia and in animal models. Earlier, we had discovered that paracrine secretion from human CD34+ cells contains proangiogenic, membrane-bound nanovesicles called exosomes (CD34Exo). OBJECTIVE Here, we investigated the mechanisms of ...

متن کامل

Chitosan Wound Dressings Incorporating Exosomes Derived from MicroRNA‐126‐Overexpressing Synovium Mesenchymal Stem Cells Provide Sustained Release of Exosomes and Heal Full‐Thickness Skin Defects in a Diabetic Rat Model

There is a need to find better strategies to promote wound healing, especially of chronic wounds, which remain a challenge. We found that synovium mesenchymal stem cells (SMSCs) have the ability to strongly promote cell proliferation of fibroblasts; however, they are ineffective at promoting angiogenesis. Using gene overexpression technology, we overexpressed microRNA-126-3p (miR-126-3p) and tr...

متن کامل

Bone Tissue Engineering: a Mini-Review

Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...

متن کامل

Human Trophoblast Progenitor Cells Express and Release Angiogenic Factors

Trophoblast stem cells develop from polar trophoectoderm and give rise to the cells that generate the placenta. Trophoblast cells are responsible for the uterinal invasion and vascular remodeling during the implantation of the embryo. However this knowledge is not yet to be confirmed for trophoblast progenitor cells (TPCs). In this study, we aimed to demonstrate that human TPCs (hTPCs) express ...

متن کامل

Therapeutic Angiogenesis by Ultrasound-Mediated MicroRNA-126-3p Delivery.

OBJECTIVE MicroRNAs are involved in many critical functions, including angiogenesis. Ultrasound-targeted microbubble destruction (UTMD) is a noninvasive technique for targeted vascular transfection of plasmid DNA and may be well suited for proangiogenic microRNA delivery. We aimed to investigate UTMD of miR-126-3p for therapeutic angiogenesis in chronic ischemia. APPROACH AND RESULTS The angi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of molecular medicine

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2013